146 research outputs found

    Decadal variations and trends of the global ocean carbon sink

    Get PDF
    We investigate the variations of the ocean CO2 sink during the past three decades using global surface ocean maps of the partial pressure of CO2 reconstructed from observations contained in the Surface Ocean CO2 Atlas Version 2. To create these maps, we used the neural network-based data-interpolation method of [Landschützer2014], but extended the work in time from 1998 through 2011 to the period from 1982 through 2011. Our results suggest strong decadal variations in the global ocean carbon sink around a long-term increase that corresponds roughly to that expected from the rise in atmospheric CO2. The sink is estimated to have weakened during the 1990s toward a minimum uptake of only -0.8 ± 0.5 Pg C yr − 1 in 2000, and thereafter to have strengthened considerably to rates of more than -2.0 ± 0.5 Pg C yr − 1. These decadal variations originate mostly from the extratropical oceans while the tropical regions contribute primarily to interannual variations. Changes in sea-surface temperature affecting the solubility of CO2 explain part of these variations, particularly at subtropical latitudes. But most of the higher latitude changes are attributed to modifications in the surface concentration of dissolved inorganic carbon and alkalinity, induced by decadal variations in atmospheric forcing, with patterns that are reminiscent of those of the Northern and Southern Annular Modes. These decadal variations lead to a substantially smaller cumulative anthropogenic CO2 uptake of the ocean over the 1982 through 2011 period (reduction of 7.5 ± 5.5 Pg C) relative to that derived by the Global Carbon Budget

    Fair Data Use Statement for SOCAT

    Get PDF

    Global Carbon Budget: Ocean carbon sink.

    Get PDF
    CO2 emissions from human activities, the main contributor to global climate change, are set to rise again in 2014 reaching 40 billion tonnes CO2 The natural carbon ‘sinks’ on land and in the ocean absorb on average 55% of the total CO2 emissions, thus slowing the rate of global climate change Increasing CO2 in the oceans is causing ocean acidificatio

    Pollution in the open oceans: 2009-2013

    Get PDF
    This review of pollution in the open oceans updates a report on this topic prepared by GESAMP five years previously (Reports and Studies No. 79, GESAMP, 2009). The latter report, the first from GESAMP focusing specifically on the oceans beyond the 200 m depth contour, was prepared for purposes of the Assessment of Assessments, the preparatory phase of a regular process for assessing the state of the marine environment, led jointly by the United Nations Environment Programme (UNEP) and the Intergovernmental Oceanographic Commission (UNESCO-IOC)

    The ocean carbon sink – impacts, vulnerabilities and challenges

    Get PDF
    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed

    Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas

    Get PDF
    Four carbonate system variables were measured in surface waters during a cruise aimed at investigating ocean acidification impacts traversing northwestern European shelf seas in the summer of 2011. High-resolution surface water data were collected for partial pressure of carbon dioxide (pCO2; using two independent instruments) and pH using the total pH scale (pHT), in addition to discrete measurements of total alkalinity and dissolved inorganic carbon. We thus overdetermined the carbonate system (four measured variables, two degrees of freedom), which allowed us to evaluate the level of agreement between the variables on a cruise whose main aim was not intercomparison, and thus where conditions were more representative of normal working conditions. Calculations of carbonate system variables from other measurements generally compared well with direct observations of the same variables (Pearson’s correlation coefficient always greater than or equal to 0.94; mean residuals were similar to the respective accuracies of the measurements). We therefore conclude that four of the independent data sets of carbonate chemistry variables were of high quality. A diurnal cycle with a maximum amplitude of 41 μatm was observed in the difference between the pCO2 values obtained by the two independent analytical pCO2 systems, and this was partly attributed to irregular seawater flows to the equilibrator and partly to biological activity inside the seawater supply and one of the equilibrators. We discuss how these issues can be addressed to improve carbonate chemistry data quality on future research cruises

    Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean)

    Get PDF
    Although coccolithophores are not as numerically common or as diverse in the Southern Ocean as they are in subpolar waters of the North Atlantic, a few species, such as Emiliania huxleyi, are found during the summer months. Little is actually known about the calcite production (CP) of these communities or how their distribution and physiology relate to environmental variables in this region. In February 2009, we made observations across Drake Passage (between South America and the Antarctic Peninsula) of coccolithophore distribution, CP, primary production, chlorophyll a and macronutrient concentrations, irradiance and carbonate chemistry. Although CP represented less than 1% of total carbon fixation, coccolithophores were widespread across Drake Passage. The B/C morphotype of E. huxleyi was the dominant coccolithophore, with low estimates of coccolith calcite ( 0.01 pmol C coccolith-/ from biometric measurements. Both cell-normalised calcification (0.01–0.16 pmol C cell-1 d-1/ and total CP (< 20 μmol C m-1 d-1/were much lower than those observed in the subpolar North Atlantic where E. huxleyi morphotype A is dominant. However, estimates of coccolith production rates were similar (0.1–1.2 coccoliths cell-1 h-1/ to previous measurements made in the subpolar North Atlantic. A multivariate statistical approach found that temperature and irradiance together were best able to explain the observed variation in species distribution and abundance (Spearman’s rank correlation D0.4, p < 0.01). Rates of calcification per cell and coccolith production, as well as community CP and E. huxleyi abundance, were all positively correlated (p < 0.05) to the strong latitudinal gradient in temperature, irradiance and calcite saturation states across Drake Passage. Broadly, our results lend support to recent suggestions that coccolithophores, especially E. huxleyi, are advancing polewards. However, our in situ observations indicate that this may owe more to sea-surface warming and increasing irradiance rather than increasing CO2 concentrations

    The reinvigoration of the Southern Ocean carbon sink

    Get PDF
    Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized

    Reframing the carbon cycle of the subpolar Southern Ocean

    Get PDF
    Global climate is critically sensitive to physical and biogeochemical dynamics in the subpolar Southern Ocean, since it is here that deep, carbon-rich layers of the world ocean outcrop and exchange carbon with the atmosphere. Here, we present evidence that the conventional framework for the subpolar Southern Ocean carbon cycle, which attributes a dominant role to the vertical overturning circulation and shelf-sea processes, fundamentally misrepresents the drivers of regional carbon uptake. Observations in the Weddell Gyre—a key representative region of the subpolar Southern Ocean—show that the rate of carbon uptake is set by an interplay between the Gyre’s horizontal circulation and the remineralization at mid-depths of organic carbon sourced from biological production in the central gyre. These results demonstrate that reframing the carbon cycle of the subpolar Southern Ocean is an essential step to better define its role in past and future climate change

    Cold-water corals in the Subpolar North Atlantic Ocean exposed to aragonite undersaturation if the 2 °C global warming target is not met

    Get PDF
    The net uptake of carbon dioxide (CO2) from the atmosphere is changing the ocean's chemical state. Such changes, commonly known as ocean acidification, include a reduction in pH and the carbonate ion concentration ([CO32−]), which in turn lowers oceanic saturation states (Ω) for calcium carbonate (CaCO3) minerals. The Ω values for aragonite (Ωaragonite; one of the main CaCO3 minerals formed by marine calcifying organisms) influence the calcification rate and geographic distribution of cold-water corals (CWCs), important for biodiversity. Here, high-quality measurements, collected on thirteen cruises along the same track during 1991–2018, are used to determine the long-term changes in Ω aragonite in the Irminger and Iceland Basins of the North Atlantic Ocean, providing the first trends of Ωaragonite in the deep waters of these basins. The entire water column of both basins showed significant negative Ωaragonite trends between −0.0014 ± 0.0002 and −0.0052 ± 0.0007 per year. The decrease in Ω aragonite in the intermediate waters, where nearly half of the CWC reefs of the study region are located, caused the Ωaragonite isolines to rapidly migrate upwards at a rate between 6 and 34 m per year. The main driver of the decline in Ωaragonite in the Irminger and Iceland Basins was the increase in anthropogenic CO2. But this was partially offset by increases in salinity (in Subpolar Mode Water), enhanced ventilation (in upper Labrador Sea Water), and increases in alkalinity (in classical Labrador Sea Water, cLSW; and overflow waters). We also found that water mass aging reinforced the Ωaragonite decrease in cLSW. Based on these Ωaragonite trends over the last three decades, we project that the entire water column of the Irminger and Iceland Basins will likely be undersaturated for aragonite when in equilibrium with an atmospheric mole fraction of CO2 (xCO2) of ~880 ppmv, corresponding to climate model projections for the end of the century based on the highest CO2 emission scenarios. However, intermediate waters will likely be aragonite undersaturated when in equilibrium with an atmospheric xCO2 exceeding ~630 ppmv, an xCO2 level slightly above that corresponding to 2°C global warming, thus exposing CWCs inhabiting the intermediate waters to undersaturation for aragonite
    corecore